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ABSTRACT: Properly fitting oceanmodels to observations is crucial for improvingmodel performance and understanding

ocean dynamics. Near-surface velocity measurements from the Global Drifter Program (GDP) contain valuable infor-

mation about upper-ocean circulation and air–sea fluxes on various space and time scales. This study explores whetherGDP

measurements can be used for usefully constraining the surface circulation from coarse-resolution ocean models, using

global solutions produced by the consortium for Estimating the Circulation and Climate of the Ocean (ECCO) as an

example. To address this problem, a careful examination of velocity data errors is required. Comparisons between anECCO

model simulation, performed without any data constraints, and GDP and Ocean Surface Current Analyses Real-Time

(OSCAR) velocity data, over the period 1992–2017, reveal considerable differences in magnitude and pattern. These

comparisons are used to estimate GDP data errors in the context of the time-mean and time-variable surface circulations.

Both instrumental errors and errors associated with limitations in model physics and resolution (representation errors) are

considered. Given the estimated model–data differences, errors, and signal-to-noise ratios, our results indicate that con-

straining ocean-state estimates to GDP can have a substantial impact on the ECCO large-scale time-mean surface circu-

lation over extensive areas. Impact of GDP data constraints on the ECCO time-variable circulation would be weaker and

mainly limited to low latitudes. Representation errors contribute substantially to degrading the data impacts.
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1. Introduction

Knowledge of ocean surface currents is essential for di-

verse applications, such as tracing the origins and the fate of

physical/biogeochemical particles (e.g., Pringle et al. 2014; Aleynik

et al. 2016), studying ocean energetics and instabilities (e.g.,

Elipot and Gille 2009; Lumpkin and Flament 2013), examining

waves and tides (e.g., Kawaguchi et al. 2015; Hui and Xu 2016;

Lozovatsky et al. 2016), and inferring velocity fields at depth

(e.g., Wunsch 1997; de La Lama et al. 2016). Surface drifters,

deployed since 1979 as part of theGlobal Drifter Program (GDP;

formally referred to as the Surface Velocity Program), directly

measure the velocity field at a nominal depth of ;15m. Despite

uneven temporal and spatial distributions, drifter velocity data are

able to capture all dynamic components, unlike estimates based

on satellite altimetry, which provide only geostrophic velocity and

require an accurate depiction of the ocean mean dynamic to-

pography (MDT) (e.g., Rio et al. 2014), and wind-derived Ekman

velocities that additionally depend on uncertain parameters in

basic Ekman layer theory (e.g., Sudre et al. 2013).

Many previous studies have taken advantage of the high

temporal (;hourly) and spatial (;a few kilometers) resolution

of the drifter velocity data for model validation (e.g., Johnson

et al. 2007; Blockley et al. 2012), understanding small-scale

processes such as turbulent flows and lateral diffusion (e.g.,

Sallée et al. 2008; Qian et al. 2014) and the assessment of high-

resolution model performance (e.g., Yu et al. 2019). Such an-

alyses can be used to improve subgrid-scale parameterizations

in ocean models. For example, Zhurbas and Oh (2003)

presented a parameterization of mixing for the midlatitude

Pacific Ocean calibrated using drifter-derived lateral diffusiv-

ity estimates. Using drifter measurements to examine model

simulations of the large-scale surface circulation on climate

time scales has not been explored as much (e.g., Petersen et al.

2019). In fact, relatively little is known about the realism of the

variable surface circulation in relatively coarse resolution cli-

mate models, even though such currents are important for

surface heat and freshwater transports and related air–sea in-

teractions (e.g., Kelly and Dong 2004; Small et al. 2008; Drews

and Greatbatch 2016; Müller et al. 2019).
Drifter data have been combined with gravity, sea level, den-

sity, and other data to derive MDT fields (e.g., Kubryakov and

Stanichny 2011; Knudsen et al. 2021), but such practice involves

removing estimates of the ageostrophic flows contained in the

drifter observations. One way to use all the information in the

drifter velocity data is through data assimilation methods (e.g.,

Wunsch et al. 2009; Sun and Penny 2019) that formally constrain

models to observations. The consortium for Estimating the

Circulation and Climate of the Ocean (ECCO), an example of

such an effort, has been providing global ocean-state estimates by

constraining a general circulation model to most available ocean

observations in aweighted least squares sense (e.g.,Wunsch et al.

2009; Forget et al. 2015). TheECCOsolutions are optimized via a

process using the method of Lagrange multipliers (e.g., Forget

et al. 2015), by which atmospheric boundary conditions, internal

model parameters and initial conditions are adjusted tominimize

the overall model–data misfits to within expected uncertainties.

Despite many model constraints from temperature, salinity,

bottom pressure, sea level and MDT data, ECCO velocity fieldsCorresponding author: Mengnan Zhao, mzhao@aer.com

APRIL 2021 ZHAO ET AL . 909

DOI: 10.1175/JTECH-D-20-0159.1

� 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 04/20/21 02:47 PM UTC

mailto:mzhao@aer.com
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


have not been constrained by direct velocity measurements.

Assimilation of surface drifter currents in other similar efforts is

unknown to us. A basic question thus is whether GDP mea-

surements could be important in improving the surface circula-

tion in climate analyses such as those produced by ECCO, on

monthly or longer (climatological) time scales.

To begin addressing such question, we take advantage of the

ECCO framework and use an available model experiment,

performedwithout any data constraints, to assess the simulated

surface currents against the GDP observations. The calculated

model–data differences provide a basic description of possible

deficiencies in the simulated surface velocities. In addition, the

model and GDP differences can be used to derive data errors.

Constraining models to data requires a careful examination of

such errors, including both instrument errors and representa-

tion errors. Regarding instrument errors, besides data noise,

theGDPdrifter measurements are also subject to uncertainties

in the drifters’ position fixes, wind, and wave-driven slip biases.

The representation errors arise from signals that can be de-

tected by the measurements but are not represented in the

model due, for example, to lack of sufficient resolution or

relevant physics. For instance, the coarse resolution in ECCO

version 4 does not allow for the representation of mesoscale

processes contained in GDP measurements, leading to signif-

icantly reduced eddy kinetic energy near strong current sys-

tems. (We will use ‘‘data errors’’ throughout to mean the

combined instrument and representation errors.) Proper esti-

mation of data errors helps avoid underfitting or overfitting of

models to observations: underfitting happens when unrealisti-

cally large errors lead to an insufficient use of the information

in the data; overfitting involves underestimated data errors that

can lead to fitting unwanted data noise. The data errors in-

ferred from model and data comparisons carried out here are

then used to evaluate themodel–data misfits on daily, monthly,

and climatological time scales and shed light on whether con-

straining to GDP observations can potentially lead to a better

representation of the surface circulation in climate models.

The paper is structured as follows. Section 2 provides details

of the drifter data and ECCO output, as well as the Ocean

Surface Current Analyses Real-Time (OSCAR) velocity

product also used in the study. Methods to estimate GDP data

errors are also presented. In section 3, time-variable and time-

mean velocity fields and basic statistics of misfits between

ECCO model simulations and GDP measurements are exam-

ined. Section 4 describes data errors on daily, monthly, and

climatological time scales and discusses, in the context of

ECCO, the feasibility of constraining climate model analyses

with the global drifter currents.1 A summary and discussion of

our findings are presented in section 5.

2. Velocity products and methods

a. ECCO, GDP, and OSCAR velocities

1) ECCO FIELDS

ECCO provides global ocean-state estimates by constraining

the Massachusetts Institute of Technology general circulation

model (MITgcm) to observational data in a physically and sta-

tistically consistent manner (https://www.ecco-group.org/). For

different research purposes, several versions of ECCO products

have been released with various resolutions, temporal coverage,

physics, observational data, and assimilation methods. In this

study, we use an ECCO version 4 release 4 control run, which is

an initial run of the ocean model without any data constraints.

(Such runs serve as the starting point for the iterative optimi-

zation procedure that brings the model closer to available data

to produce the ECCO state estimates.) Full details of the

ECCO version 4 release 4 (and previous releases) model setup

used here are provided in Forget et al. (2015) and Fukumori

et al. (2017, 2019). The model is run on a global grid with

forcing from surface atmospheric variables from the European

Centre for Medium-Range Weather Forecasts interim re-

analysis (ERA-Interim; Dee et al. 2011), including surface

pressure fields as described in Fukumori et al. (2019). Initial

conditions are those used to start the optimization for ECCO

version 4 release 4 (Fukumori et al. 2019). The horizontal

resolution varies from 22 to 111 km: highest in high latitudes

and lowest in midlatitudes (Wang et al. 2019). Daily zonal and

meridional velocities are available globally from 1 January

1992 to 30 December 2017 on the model native grids over 50

vertical levels. Velocities at the second vertical level (nomi-

nally 15m), which represent mean values over 10–20m depth,

are used to compare with drifter measurements.

2) GDP DATA

The GDP (https://www.aoml.noaa.gov/phod/gdp/; Lumpkin

and Centurioni 2019) offers direct measurements of mixed

layer currents. Each drifter consists of a surface float with an

antenna that reports drifter locations to satellites. A drogue at

15m is attached to the surface float, to minimize the surface

float sliding caused by winds or waves. Pseudo-Eulerian sur-

face horizontal velocities are derived from the drifter positions.

First deployed in 1979, drifters cover almost 80% of the global

ocean in 58 3 58 bins and thus provide a valuable dataset to

examine ocean surface currents on very short (hourly) to lon-

ger (climatological) scales.

Raw data are processed atNOAA’sAtlanticOceanographic

and Meteorological Laboratory (AOML). After interpolation

via kriging to 6 h intervals (Hansen and Poulain 1996), these

velocity data are corrected for the ‘‘slip’’ effects induced by

winds and waves by removing a fraction of downwind velocity

component following Niiler et al. (1995). The slip correction is

applied to both drogued and drogue-lost drifters. Considering

that drogue-lost drifters are more susceptible to winds, higher

fractions of downwind velocities are removed in slip correction

for drogue-lost than for drogued drifters (Poulain et al. 2009;

Laurindo et al. 2017). The corrected velocities from undrogued

drifters have been found to be reliable and consistent with

1 In this study, we use theEulerian instead ofLagrangian approach

to understand the potential of using GDP data to constrain ECCO

surface currents. The Eulerian method is easier to explore given that

horizontal velocities are a prognostic variable of ECCO and most

other modeling frameworks, and simple estimates of uncertainty are

also feasible. The use of the Lagrangian approach is beyond the

scope of our current study and may be pursued in the future.
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those from drogued drifters (Laurindo et al. 2017). Therefore,

we use velocities from both kinds to maximize the data quan-

tity. A low-pass filter is then applied to the original processing

at AOML with a cutoff period of 1.5 times the local inertial

period, with aminimum of 1 day and amaximum of 5 days. The

filter removes high frequency signals such as tides and inertial

motions. Velocity data used in this study refer to the period

between 1979 and 2017.

3) OSCAR PRODUCT

The OSCAR product is a global surface mixed layer

current database [https://www.esr.org/research/oscar/; Earth

and Space Research (ESR); ESR 2009; Bonjean and Lagerloef

2002], representing the average velocity of the upper 30m of

the water column. The estimates are calculated using a quasi-

steady geostrophic model together with a wind-driven ageo-

strophic component and a thermal wind adjustment, derived

from sea surface height, wind stress and sea surface tempera-

ture data (Hausman et al. 2009). Near the equator where ge-

ostrophy breaks down (the Coriolis parameter approaches

zero), the model is adjusted so that the pressure gradient force

and the wind drag force terms are balanced to zero order

(Bonjean and Lagerloef 2002). The resultant velocities have

been validated with equatorial ADCP currents (Johnson et al.

2007). Temporal coverage is from October 1992 to present at

intervals of 5 days on 1/38 3 1/38 grids. Each value at a given

time is derived from satellite data within a 10-day window; i.e.,

velocities at adjacent time intervals are not fully independent.

We use OSCAR velocities to compare with the ECCO and

GDP fields and also to estimate the drifter data errors on cli-

matological time scales.

b. Calculation of daily, monthly, and climatological

velocity field

For the purpose of this study, the 6-hourly drifter velocity

data are first mapped onto the ECCO grid to create daily

drifter velocity field. All GDP velocities on a given day

within each ECCO grid cell are first selected and then av-

eraged to provide a daily velocity on each cell. Note that

there are many days when no drifter measurements are

available on any given grid cell. Drifter measurements are

unevenly distributed both temporally and spatially (Fig. 1).

A higher concentration of drifter data is found in the Ekman

convergence zones (i.e., interior of subtropical basins;

Figs. 1b,c). The number of drifter measurements increases

from 1992 to 2017 (Fig. 1a).

Daily ECCO model velocities used in this study are those

with spatial and temporal coverage corresponding to where

and when interpolated daily drifter velocities are available.

Monthly ECCO and drifter velocity fields are calculated as

the temporal mean of daily velocities (when available) over

each month. Due to the uneven GDP data distribution, only a

few daily fields are usually available to estimate any monthly

value (Fig. 1b).

In addition to daily and monthly fields, a velocity climatol-

ogy is estimated from daily fields for each of the three products

in section 2a. We first spatially average OSCAR velocities at

each time onto the ECCO grid as done with GDP data. To

account for the coarser temporal resolution of OSCAR data,

on each grid, mean values of GDP and ECCO velocities over

10 days centered on OSCAR time steps are computed. The

OSCARdata are not used when noGDP data are available. To

this end, the three products are processed to the same temporal

FIG. 1. (a) Number of grids with drifter data per day (blue) and total drifter measurements per day (red) from

1992 to 2017. (b) Average number of days with drifter data per month over 1992–2017. (c) Total number of days

with drifter data over 1992–2017.

APRIL 2021 ZHAO ET AL . 911

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 04/20/21 02:47 PM UTC

https://www.esr.org/research/oscar/


and spatial resolution and coverage and then time averaged to

arrive at the climatological currents.

c. Calculation of errors

We introduce the methods used to estimate errors for GDP

data for the purpose of discussing possibility of constraining

climate models with drifter data. Again, as stated in the in-

troduction, we seek estimates that contain both instrument and

representation errors, with the latter defined in the context of

the ECCO version 4 model setup used in this work. As it is

useful when implementing data constraints to examine sepa-

rately time-variable and time-mean misfits, we examine re-

spective errors separately below.

The calculation of errors for time-variable GDP velocities

«D follows Quinn and Ponte (2008) and Vinogradova et al.

(2014). Denoting the ‘‘true,’’ measured, and modeled velocity

to be s, D, and M, respectively, then

D5 s1 «
D
, (1)

M5 s1 «
M
, (2)

where «D («M) is the error associated withmeasured (modeled)

velocity.

The difference between variances of Eqs. (1) and (2) yields

var(D)2 var(M)5 var(«
D
)2 var(«

M
)

1 2cov(s, «
D
)2 2cov(s, «

M
), (3)

and the variance of Eq. (1) 2 Eq. (2) gives

var(D)1 var(M)5 2cov(D,M)1 var(«
D
)

1 var(«
M
)2 2cov(«

D
, «

M
), (4)

where var and cov are the variance and covariance operators.

Adding Eq. (3) to Eq. (4), we obtain an estimate of data error

variances as

var(«
D
)5 var(D)2 cov(D,M)2 cov(s, «

D
)

1 cov(s, «
M
)1 cov(«

D
, «

M
). (5)

Assuming the true signal s, errors «D and «M are uncorre-

lated, i.e., the last three terms in Eq. (5) can be neglected, data

error variances can be estimated from measured and modeled

velocities following

var(«
D
)5 var(D)2 cov(D,M). (6)

Under the assumption of uncorrelated s, «D and «M, Eq. (4)

can be written as var(«D)1 var(«M)5 var(D2M). Therefore,

the maximum value of var(«D) is var(D 2 M) when the as-

sumption is appropriate. Since var(«M) is unlikely to be 0 and

to avoid overestimating data errors, we cap var(«D) # 90%

var(D 2 M). In addition, to mitigate unphysical (negative)

estimates of errors, we bound var(«D) $ 10%var(D 2 M).

We combine two complementary approaches to evaluate the

errors for GDP time-mean velocity data. The first approach

uses the absolute value of the difference between GDP and

OSCAR climatologies (method 1 hereafter), which effectively

assumes the latter to be the ‘‘truth.’’ As the OSCAR product

includes scales that are not resolved by ECCO, we use a

smoothed OSCAR field obtained by averaging velocities in a

38 3 38 cell centered on a given grid point. These smoothed

fields are more consistent with the spatial scales represented in

the ECCO fields, and their use thus minimizes the potential

underestimation of representation errors if unsmoothed

OSCAR values are used instead.

A second approach uses twice the value of the standard er-

rors of the GDP climatology discussed by Laurindo et al.

(2017), provided on 1/48 3 1/48 grid (method 2 hereafter).

These standard errors are associated with undersampling of

mesoscale variability and limited number of samples that lead

to biases in the means [see Laurindo et al. (2017) for details].

The use of twice of the standard errors follows the results of

FIG. 2. (top) Standard deviation of daily zonal velocities from (a)GDPand (b) ECCO. (bottom) Standard deviation

of daily meridional velocities from (c) GDP and (d) ECCO. Note the nonlinear color bar.
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Laurindo et al. (2017) that they may be an underestimate of

actual errors by a factor of 2. Errors frommethod 2 are then bin

averaged onto the ECCO grid for further analyses.

In combining the values from the two approaches to arrive at

the error fields for the climatological GDP currents, we use

method 1 as the basis but limit those values to be no smaller

than the errors associated withGDP sampling given bymethod

2. In addition, as done with errors for time-variable velocities,

the square of these errors are then capped to be between 10%

and 90% of the square of the ECCO and GDP differences.

d. Cost estimate

Information on data errors allows one to evaluate the po-

tential of constraining ECCO velocity field using GDP data via

properly weighted model–data misfits. In many optimization

problems, the parameter used to measure whether a model M

could be improved by fitting to a datasetD is the so-called cost,

usually defined as h(D2M)
2
/«2Di, where the angle brackets h i

denotes an average. Costs larger than one imply that the misfit

between model and data exceeds the data error; therefore, op-

timization could be applied to the model to reduce the misfit

and improve its performance.

3. Assessment of surface velocity fields

We begin by comparing the variability in GDP and ECCO

control run daily velocity fields (Fig. 2). In general, standard

deviations for GDP are larger than those for ECCO almost ev-

erywhere. Highest variability in GDP data occurs in regions with

strong eddies associated with unstable mean currents. Variability

in ECCO velocities, however, shows a different spatial pattern.

Enhanced variability is located mostly near the equator and is of

comparable magnitude (;0.6m s21) to that in GDP data.

Regions near western boundaries and in the Southern Ocean,

along the path of the Antarctic Circumpolar Current (ACC), are

much quieter than what is seen in the GDP data.

The differences noted in Fig. 2 are generally consistent with

expectations. More energetic GDP velocities can be mostly

FIG. 3. (a),(c),(e) Zonal and (b),(d),(f) meridional time-mean velocity over 1992–2017 from (a),(b) GDP, (c),(d)

ECCO, and (e),(f) OSCAR.
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attributed to the capability of drifters to capture eddies and

other smaller-scale structures, while ECCO cannot represent

velocities associated with these processes due to its coarse

resolution. In contrast, the closer match in magnitudes at low

latitudes is consistent with the primarily wind-driven currents.

Even away from western boundary regions with strong eddy

activity, ECCO values are substantially weaker. Aside from

the issue of resolution, it is unclear whether these discrepancies

may also be related to how wind forcing, momentum transfers,

and dissipation are represented in ECCO.

The standard deviations of monthly velocities (not shown)

are similar to those of daily velocities in Fig. 2, both in mag-

nitude and spatial distribution. The reason is that the monthly

velocities represent the average of only a few days for which

data are available, which is not sufficient to substantially sup-

press the submonthly variability.

The time-mean currents from GDP, ECCO and OSCAR

(Fig. 3), computed using the available daily fields over 1992–

2017, show reasonable agreement in their large-scale spatial

patterns. Prominent currents near western boundary and

equatorial regions and the ACC are all well captured in the

three products. Major Ekman convergence/divergence zones,

indicated by the large-scale patterns of meridional currents in

opposite directions, are also compatible. Despite similar spa-

tial patterns, the magnitude of mean currents exhibits notable

differences among the three products. In particular, strong

western boundary currents and their extensions as well as the

ACC are visibly weaker in ECCO compared to GDP and

OSCAR. The tendency for weaker circulation in ECCO is

most evident for zonal currents, even in the basin interiors

away from strong boundary currents. The magnitude of ECCO

meridional currents are more comparable to those of GDP and

OSCAR. Regarding the GDP and OSCAR climatologies, they

are very comparable in pattern and magnitude, consistent with

previous validation studies of OSCAR velocities using GDP

(e.g., Johnson et al. 2007; Sikhakolli et al. 2013) done over

different time periods.

With a lower spatial resolution, the ECCO climatology

appears necessarily much smoother and weaker. In fact, an

experimental, higher resolution ECCO product (version 5;

https://ecco.jpl.nasa.gov/drive/files/Version5/Alpha) generates

finer and stronger currents; smaller-scale features like mean-

ders also become visible where strong eddy activity is observed.

However,mean currents fromdrifters are alsouncertain—standard

errors (calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(D)/N

p
, where N indicates the num-

ber of sampling days) can be substantial compared to noted

FIG. 4. (a),(b) Maps and (c),(d) histograms of errors for time-variable (daily) (a),(c) zonal and (b),(d) meridional

velocities. Also shown are signal-to-noise ratios of GDP (e) zonal and (f) meridional velocities on daily time scale.
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differences in ECCO and GDP velocities, particularly in the

basin interiors where mean currents are also weakest.

Insufficient suppression of eddy noise can be an issue: e.g.,

averaging velocities over all OSCAR time samplings instead

of just over selected days indeed leads to weaker mean

currents (not shown).

4. Assessing errors and possible GDP data constraints

a. GDP velocity errors

The majority of time-variable GDP data errors (based on

daily fields) lie between 0.05 and 0.25m s21, with the mode of

the distributions ;0.1m s21 and extreme values as large as

0.6m s21 (Figs. 4a–d). Regions with large errors coincide with

those of higher variability (Figs. 4a,b and 2a,c). Large uncer-

tainties in these regions are associated with both instrument

and representation errors. The instrument errors possibly stem

from sampling errors (lower sampling density in these regions)

and the caveats in wave-induced slip removal (Laurindo et al.

2017). The capability of drifter measurements to sample

velocities at spatial scales that ECCO does not resolve can be a

major source of representation errors.

The spatial distribution of our estimate of time-variable

errors is comparable with that of the errors estimated by

Laurindo et al. (2017), which are derived by comparing the

drifter measured velocities to geostrophic velocities for mean,

seasonal and residual components. However, our estimate is

larger by ;0.04–0.45m s21 from basin interiors to energetic

regions. Although the values from Laurindo et al. (2017) can-

not exclude all representation errors, theymay roughly serve as

an upper limit of instrument errors. From comparing with our

estimates, this indicates as expected largest representation

errors in the eddy-active areas and smaller representation er-

rors in less-energetic basin interiors. As with standard devia-

tions, errors based on monthly fields are comparable to those

based on daily fields and are not shown here.

To assess the relative relevance of the variability in GDP

velocities, we examine the signal-to-noise ratio (SNR) calcu-

lated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(D)/var(«D)

p
(Figs. 4e,f). The SNR values are

largest near the equator, up to 1.3–2.5, meaning that measured

FIG. 5. (a),(c) Maps of errors for time-mean (a) zonal and (c) meridional velocities. Values are based on method 1

but first limited to be no smaller than those given bymethod 2, and then the square of errors are capped between 10%

and 90% of the square of the ECCO and GDP differences (see section 2c). (b),(d) Maps of errors for time-mean

(b) zonal and (d) meridional velocities from method 2 (see section 2c). (e)–(f) Histograms of errors in (a)–(d).
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signals are larger than data errors and therefore are appro-

priate to be used for further analyses. However, SNR in other

regions does not deviate much from one, meaning that the

signal variability cannot be distinguished from ‘‘noise.’’

Substituting Eq. (1) in SNR formula, values of SNR ; 1 indi-

cate the covariance between modeled and drifter velocities is

close to zero. The low model–data covariance also explains the

similar magnitude of data errors (Figs. 4a,b) computed from

Eq. (1) and velocity standard deviations (Figs. 2a,c).

Errors for time-mean velocities calculated as described in

section 2c show larger values in regions with major currents

(Figs. 5a,c). Over these regions, errors for zonal andmeridional

velocities are;0.11–0.25m s21. In the basin interior, errors are

generally smaller than 0.05m s21. These values contain both

instrument and representation errors, together with biases as-

sociated with undersampling of mesoscale variability. We at-

tempt to separate these errors by examining error estimates

given by method 2 (see section 2c), which are considered

to be mostly sampling related errors (Figs. 5b,d). The latter

errors yield values of ;0.05–0.15m s21 in energetic regions

and,0.03m s21 in quieter areas. Given that instrument errors

from calibrated drifter velocities should be small, this suggests

that representation errors play a substantial role in regions of

major currents as expected from some of the fine structure

associated, for example, with the ACC, the Gulf Stream, and

the Kuroshio.

b. Constraining ECCO velocity field

We use cost to evaluate the potential of constraining ECCO

velocity field with GDP data, as introduced in section 2d. The

cost estimates for time-variable velocities, calculated as

h(D2M)2/«2Di, are presented in Fig. 6, based on errors in

Fig. 4. Note that since we cap time-variable data error vari-

ances within 10% and 90% of var(D 2 M), our estimated cost

values naturally range between 1.1 and 10. Cost in;55%of the

ocean grids are affected by the capping. There are very few

areas in Fig. 6 with cost values substantially greater than one.

Higher cost values (1.3–1.6) are found along latitudes ;108N
and ;108S and in the North Pacific. Together with low SNR

(Figs. 4e,f), we conclude that the influence of using GDP

measurements in constraining the variability in ECCO daily

surface velocity field would be limited mostly to low latitude

regions, which have currents that are primarily wind driven and

relatively large scale, and where representation errors are

somewhat weaker. Better advantage of the GDP data would

likely result from increased model resolutions, to be able to

represent more of the mesoscale and smaller features captured

by the drifters. Cost estimates for monthly surface velocities

are similar to those for daily velocities and are not shown here.

Regarding time-mean surface currents, constraining ECCO

using the GDP climatology seems more important, as shown in

the maps of cost (Figs. 7a,b) calculated as the ratio of the

square of the ECCO–GDP differences over the square of the

errors in Figs. 5a and 5c. Cost values substantially greater than

1 can be found in many regions. Particularly for zonal veloci-

ties, extensive areas in the tropics as well as in some subtropical

basin interiors show costs greater than 2. For meridional ve-

locities, areas with cost values greater than 1 are still present

but tend to be smaller and less well organized.

The somewhat spatially noisy character of the cost in Figs. 7a

and 7b could be mostly owing to the short-scale structures

sampled by drifters. To be more effective, one can attempt to

apply constraints based on larger-scale velocity features. We

explore these effects by calculating costs based on GDP–

ECCO misfits spatially smoothed over 38 3 38 boxes, with

corresponding errors estimated from the similarly smoothed

differences between the GDP and OSCAR time-mean veloc-

ities (Figs. 7e,f). Coherent areas with costs greater than 1 that

FIG. 6. (a),(b) Maps of cost for daily (a) zonal and (b) meridional velocities. (c),(d) Histograms of cost values in

(a) and (b). Note that y axes are in log scale.
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are more spatially smooth remain visible and are clearer for

meridional velocities. These results indicate that GDP con-

straints, either at original resolutions or in some spatially av-

eraged form, could affect the surface current representation in

ECCO state estimates.

5. Summary and discussion

In this paper, we have examined the nature of the surface

currents determined from GDP data in comparison with those

simulated by an ECCOmodel run for the period 1992–2017. A

main motivation was to explore the potential for improving

circulation estimates by constraining coarse-resolution cli-

mate-type models to drifter measurements. The mean and

variability of GDP currents are comparable in magnitude to

the model currents at low latitudes, where large-scale wind-

driven currents tend to dominate, but they are considerably

larger elsewhere, reflecting in part the presence of short-scale

features in boundary currents and eddies that are not repre-

sented in the coarse-resolution model. Using the model–data

comparisons, data errors for time-variable and time-mean ve-

locities were estimated separately. These errors contain both

instrument noise and representation errors associated with

data–model mismatch in resolution or deficiencies in model

physics. Model–data misfits were then evaluated based on the

error estimates.

For time-variable (daily andmonthly) velocities, differences

between ECCO and GDP are found not to be substantially

larger than data errors over most regions. Potential impacts of

incorporating drifter velocity constraints in ECCO optimiza-

tion procedures would be limited mostly to low latitudes. For

time-mean velocities, differences between model and data can

be substantially larger than the estimated data errors, indi-

cating that modeled surface currents in a wide range of areas

could be improved through constraints to drifter velocities.

In fact, the surface velocity field from the latest optimized

ECCO estimate (version 4, release 4; https://ecco-group.org/

products-ECCO-V4r4.htm; Fukumori et al. 2019) is found to

be closer to the GDP data than that from the control run used

here (not shown). Such behavior indicates that other data

constraints (e.g., altimetry, geodetic MDT) used in the ECCO

estimate cause the surface circulation to be closer to that im-

plied by the GDP data. This is consistent with our inference

that GDP data contain relevant information for constraining

ECCO solutions. Using the error estimates derived in this

work, GDP velocities are currently being incorporated into the

FIG. 7. (a),(b) Maps of cost for time-mean (a) zonal and (b) meridional velocities. (c),(d) Histograms of cost

values in the maps in (a) and (b). Note that y axes are in log scale. (e),(f) Maps of cost for time-mean (e) zonal

and (f) meridional velocities, with cost values calculated based on smoothed GDP–ECCO misfits and smoothed

GDP–OSCAR differences.
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ECCO inverse modeling framework together with other vari-

ables. One interesting question for future study is whether the

drifters can bring extra information to the optimization prob-

lem relative to all the other datasets.

Previous use of drifter data in improving MDT estimates

(e.g., Rio and Hernandez 2004) involves removing the ageo-

strophic component of the surface velocity to focus on the

geostrophic flow related to the surface height gradients. One

advantage of the proposed ECCO optimization with drifter

constraints is that one makes full use of the information in the

drifter measurements. Such information can help constrain the

geostrophic as well as ageostrophic components of the surface

circulation.

The use of all data, including drifters, in an ECCO-like op-

timization procedure should lead to improved estimates of the

full surface circulation and likely improved MDT estimates as

well. The latter fields can be used in turn to derive better es-

timates of the marine geoid for comparison with those derived

from GRACE and other space geodesy measurements. To the

extent that the surface circulation is dependent on air–sea

momentum transfers and kinetic energy dissipation, as-

similation of GDP data can also lead to more realistic

boundary forcing and subgrid-scale physical parameteri-

zations needed for accurate descriptions of surface circu-

lations in climate models.

Some limitations of our results are worth noting. Errors for

time-variable velocities are calculated based on the assumption

of negligible mutual correlation between data error, model

error, and the common velocity signal. Violation of this as-

sumption may cause biased error estimates. Similar issues can

affect the estimated time-mean errors. In addition, there are

some inevitable arbitrary assumptions in bounding the errors,

but such measures attempt to mitigate extreme overfitting or

underfitting that can lead to problems in constrained opti-

mization procedures. In this context, the combined use of

different datasets as proposed here can help expose incon-

sistencies and potential issues with error estimates.
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